Tissue-specifically autophagy deficient mice

We generated conditional knockout mice of Atg7. Atg7 is essential for ATG conjugation systems and autophagosome formation, amino acid supply in neonates, and starvation-induced bulk degradation of proteins and organelles in mice. Atg7 cKO mice are useful as model mice of disorders related to autophagy deficiency.

CHARACTERISTICS

Tissue-specific autophagy deficiency

Atg7 cKO mice were generated by using the Cre-loxP technology. By crossing a line of transgenic mice that express the Cre recombinase under the tissue-specific expressing promoter, you can knock out Atg7 gene only in your intended tissue.

Generation of tissue-specific Atg7-deficient mice

- A number of groups have generated various tissue-specific autophagy-deficient mice.
- Autophagy deficiency relates to many disorders such as neurodegenerative disorder, tumor formation, diabetes, etc.

disorder	tissue/cell	Cre Tg mice	phenotype	Ref.
Neuro- degenerative disorder	Brain	Nestin Cre tg	 behavioral defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement die within 28 weeks of birth 	1
	Purkinje cells	Pcp2 Cre tg	 cell-autonomous, progressive dystrophy (manifested by axonal swellings) and degeneration of the axon terminals ataxia of gait at one year old 	2
Hepatitis, Liver cancer	Liver	Alb Cre tg	 enlargement of the liver liver injury benign adenoma 	3
	Liver	Mx1 Cre tg		4
Diabetes	β- pancreati c cells	RIP Cre tg	 atrophia of β-pancreatic cells reduction of insulin secretion impairment of beta-cell adaptation to high-fat diet ÷ type 2 diabetes 	5

* Reference

- 1. Komatsu et al., Nature, 880-884, 2006
- 2. Komatsu et al., Proc. Natl. Acad. Sci. USA, 201, 14486-94, 2007
- 3. Komatsu et al., Cell 1149-63 2007, Inami Y. et al., JCB 275-284, 2011
- 4. Komatsu et al., JCB, 169, 425-434, 2005
- 5. Ebato et al, Cell Metab. 325-332, 2008, Jung et al, Cell Metab 318-324, 2008

OFFERS

- Research and development using Atg7 cKO mice (license)
- Collaborative research with the inventor or commission of a particular research (collaborative research, commissioned research)

Yumiko Ogata, Manager,

Technology Licensing Office, Tokyo Metropolitan Institute of Medical Science http://www.igakuken.or.jp/tlo/ e-mail:chizai@igakuken.or.jp