We recently discovered novel and crucial roles of non-standard DNA structures in regulation of DNA replication and transcription. Notably, we found that G-quadruplex structures, which are widely present on genomes (estimated to be present at more than 370,000 locations on the human genome), regulate organization of chromatin architecture and initiation of DNA replication. Our major goal is to establish a novel principle of the genome by elucidating the fundamental and universal functions of G-quadruplex and other non-B type DNA structures in regulation of various genome functions. Through these efforts, we will also explore the possibility that mutations found in various diseases including cancer and neurodegenerative diseases are related to alteration and mal-formation of these non-B DNA structures, which are likely to be essential components of genomes but somehow have been disregarded in the past.

“...the genome that are crucial for shaping the chromosomes, copying and reading out genetic information, and even for causing detrimental diseases.”

We recently discovered novel and crucial roles of non-standard DNA structures in regulation of DNA replication and transcription. Notably, we found that G-quadruplex structures, which are widely present on genomes (estimated to be present at more than 370,000 locations on the human genome), regulate organization of chromatin architecture and initiation of DNA replication. Our major goal is to establish a novel principle of the genome by elucidating the fundamental and universal functions of G-quadruplex and other non-B type DNA structures in regulation of various genome functions. Through these efforts, we will also explore the possibility that mutations found in various diseases including cancer and neurodegenerative diseases are related to alteration and mal-formation of these non-B DNA structures, which are likely to be essential components of genomes but somehow have been disregarded in the past.