Achievement

主要研究業績

  1. Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T.
    Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation.
    Cell Death Discovery 9: 166, 2023.
    https://doi.org/10.1038/s41420-023-01460-8
  2. Nishijima E, Honda S, Kitamura Y, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Murakami A, Matsuda A, Nakano T, Parada LF, Harada T.
    Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors.
    Molecular Therapy 31: 810-824, 2023.
    https://doi.org/10.1016/j.ymthe.2022.11.018
  3. Shinozaki Y, Leung A, Namekata K, Saitoh S, Nguyen HB, Takeda A, Danjo Y, Morizawa Y, Shigetomi E, Sano F, Yoshioka N, Takebayashi H, Ohno N, Segawa T, Miyake K, Kashiwagi K, Harada T, Ohnuma S, Koizumi S.
    Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy.
    Science Advances 8: eabq1081, 2022.
    https://www.science.org/doi/10.1126/sciadv.abq1081
  4. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, Ichijo H, Harada T.
    ASK1 signaling regulates phase specific glial interactions during neuroinflammation.
    Proceedings of the National Academy of Sciences of the U.S.A. 119: e2103812119, 2022.
    https://www.pnas.org/doi/10.1073/pnas.2103812119
  5. Hamada K, Shinozaki Y, Namekata K, Matsumoto M, Ohno N, Segawa T, Kashiwagi K, Harada T, Koizumi S.
    Loss of P2Y1 receptor triggers glaucoma-like pathology in mice.
    British Journal of Pharmacology 178: 4552-4571, 2021.
    https://pubmed.ncbi.nlm.nih.gov/34309010/
  6. Namekata K, Guo X, Kimura A, Azuchi Y, Kitamura Y, Harada C, Harada T.
    Roles of the DOCK-D family proteins in a mouse model of neuroinflammation.
    Journal of Biological Chemistry 295: 6710-6720, 2020.
    https://pubmed.ncbi.nlm.nih.gov/32241915/
  7. Namekata K, Guo X, Kimura A, Arai N, Harada C, Harada T.
    DOCK8 is expressed in microglia, and it regulates microglial activity during neurodegeneration in murine disease models.
    Journal of Biological Chemistry 294: 13421-13433, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/31337702
  8. Noro T, Namekata K, Kimura A, Azuchi Y, Hashimoto N, Moriya-Ito K, Komaki Y, Lee CY, Okahara N, Guo X, Harada C, Kim E, Nakano T, Tsuneoka H, Inoue T, Sasaki E, Tokuno H, Harada T.
    Normal tension glaucoma-like degeneration of the visual system in aged marmosets.
    Scientific Reports 9: 14852, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/31619716
  9. Honda S, Namekata K, Kimura A, Guo X, Harada C, Murakami A, Matsuda A, Harada T.
    Survival of alpha and intrinsically photosensitive retinal ganglion cells in NMDA-induced neurotoxicity and a mouse model of normal tension glaucoma.
    Investigative Ophthalmology & Visual Science 60: 3696-3707, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/31487370
  10. Wiltrout K, Ferrer A, van de Laar I, Namekata K, Harada T, Klee EW, Zimmerman MT, Cousin MA, Kempainen JL, Babovic-Vuksanovic D, van Slegtenhorst MA, Aarts-Tesselaar CD, Schnur RE, Andrews M, Shinawi M.
    Variants in DOCK3 cause developmental delay and hypotonia.
    European Journal of Human Genetics 27: 1225-1234, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/30976111
  11. Sano H, Namekata K, Kimura A, Shitara H, Guo X, Harada C, Mitamura Y, Harada T.
    Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma.
    Cell Death and Disease 10: 75, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/30692515
  12. Harada C, Kimura A, Guo X, Namekata K, Harada T.
    Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning.
    British Journal of Ophthalmology 103: 161–166, 2019.
    https://www.ncbi.nlm.nih.gov/pubmed/30366949
  13. Azuchi Y, Namekata K, Shimada T, Guo X, Kimura A, Harada C, Saito A, Yamagata K, Harada T.
    Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury.
    Scientific Reports 8: 10132, 2018.
    https://www.ncbi.nlm.nih.gov/pubmed/29973613
  14. Akaiwa K, Namekata K, Azuchi Y, Sano H, Guo X, Kimura A, Harada C, Mitamura Y, Harada, T.
    Topical ripasudil suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma.
    Investigative Ophthalmology & Visual Science 59: 2080-2089, 2018.
    https://www.ncbi.nlm.nih.gov/pubmed/29677370
  15. Guo X, Namekata K, Kimura A, Harada C, Harada T.
    The Renin-angiotensin system regulates neurodegeneration in a mouse model of optic neuritis.
    American Journal of Pathology 187: 2876-2885, 2017.
    https://www.ncbi.nlm.nih.gov/pubmed/28919108
  16. Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T., Koizumi S.
    Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy.
    JCI Insight 2: e93456, 2017.
    https://www.ncbi.nlm.nih.gov/pubmed/28978804
  17. Guo X, Kimura A, Azuchi Y, Akiyama G, Noro T, Harada C, Namekata K, Harada T.
    Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma.
    Scientific Reports 6: 33950, 2016.
    https://www.ncbi.nlm.nih.gov/pubmed/27669894
  18. Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T.
    Valproic acid prevents NMDA-induced retinal ganglion cell death via stimulation of neuronal TrkB receptor signaling.
    American Journal of Pathology 185: 756-764, 2015.
    https://www.ncbi.nlm.nih.gov/pubmed/25542970
  19. Namekata K, Kimura A, Kawamura K, Harada C, Harada T.
    Dock GEFs and their therapeutic potential: Neuroprotection and axon regeneration.
    Progress in Retinal and Eye Research 43: 1-16, 2014.
    http://www.ncbi.nlm.nih.gov/pubmed/25016980
  20. Namekata K, Kimura A, Kawamura K, Guo X, Harada C, Tanaka K, Harada T.
    Dock3 attenuates neural cell death due to NMDA neurotoxicity and oxidative stress in a mouse model of normal tension glaucoma.
    Cell Death and Differentiation 20: 1250-1256, 2013.
    http://www.ncbi.nlm.nih.gov/pubmed/23852370
  21. Namekata K, Harada C, Guo X, Kimura A, Kittaka D, Watanabe H, Harada T.
    Dock3 stimulates axonal outgrowth via GSK-3β-mediated microtubule assembly.
    Journal of Neuroscience 32: 264-274, 2012.
    http://www.ncbi.nlm.nih.gov/pubmed/22219288
  22. Harada C, Guo X, Namekata K, Kimura A, Nakamura K, Tanaka K, Parada LF, Harada T.
    Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration.
    Nature Communications 2: 189, 2011.
    http://www.ncbi.nlm.nih.gov/pubmed/21304518
  23. Namekata K, Harada C, Taya C, Guo X, Kimura H, Parada LF, Harada T.
    Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex.
    Proceedings of the National Academy of Sciences of the U.S.A. 107: 7586-7591, 2010.
    http://www.ncbi.nlm.nih.gov/pubmed/20368433
  24. Guo X, Harada C, Namekata K, Matsuzawa A, Camps M, Ji H, Swinnen D,Jorand-Lebrun C, Muzerelle M, Vitte P, Ruckle T, Kimura A, Kohyama K, Matsumoto Y, Ichijo H, Harada T.
    Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway.
    EMBO Molecular Medicine 2: 504-515, 2010.
    http://www.ncbi.nlm.nih.gov/pubmed/21064192
  25. Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K.
    The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma.
    Journal of Clinical Investigation 117: 1763-1770, 2007.
    http://www.ncbi.nlm.nih.gov/pubmed/17607354
  26. Harada T, Harada C, Parada LF.
    Molecular regulation of visual system development: more than meets the eye.
    Genes & Development 21: 367-378, 2007.
    http://www.ncbi.nlm.nih.gov/pubmed/17322396

ページトップへもどる